spafe.features.gfcc#

  • Description : Gammatone Frequency Cepstral Coefficients (GFCCs) extraction algorithm implementation.

  • Copyright (c) 2019-2024 Ayoub Malek. This source code is licensed under the terms of the BSD 3-Clause License. For a copy, see <https://github.com/SuperKogito/spafe/blob/master/LICENSE>.

spafe.features.gfcc.erb_spectrogram(sig: ndarray, fs: int = 16000, pre_emph: bool = True, pre_emph_coeff: float = 0.97, window: Optional[SlidingWindow] = None, nfilts: int = 24, nfft: int = 512, low_freq: float = 0, high_freq: Optional[float] = None, scale: typing_extensions.Literal[ascendant, descendant, constant] = 'constant', fbanks: Optional[ndarray] = None, conversion_approach: typing_extensions.Literal[Glasberg] = 'Glasberg') Tuple[ndarray, ndarray][source]#

Compute the Gammatone/ erb scale spectrogram also known as Cochleagram.

Parameters
  • sig (numpy.ndarray) – a mono audio signal (Nx1) from which to compute features.

  • fs (int) – the sampling frequency of the signal we are working with. (Default is 16000).

  • pre_emph (bool) – apply pre-emphasis if 1. (Default is True).

  • pre_emph_coeff (float) – pre-emphasis filter coefficient. (Default is 0.97).

  • window (SlidingWindow) – sliding window object. (Default is None).

  • nfilts (int) – the number of filters in the filter bank. (Default is 40).

  • nfft (int) – number of FFT points. (Default is 512.

  • low_freq (float) – lowest band edge of mel filters (Hz). (Default is 0).

  • high_freq (float) – highest band edge of mel filters (Hz). (Default is samplerate / 2).

  • scale (str) – monotonicity behavior of the filter banks. (Default is “constant”).

  • fbanks (numpy.ndarray) – filter bank matrix. (Default is None).

  • conversion_approach (str) – approach to use for conversion to the erb scale. (Default is “Glasberg”).

Returns

  • (numpy.ndarray) : the erb spectrogram (num_frames x nfilts)

  • (numpy.ndarray) : the fourrier transform matrix.

Return type

(tuple)

Tip

  • scale : can take the following options [“constant”, “ascendant”, “descendant”].

  • conversion_approach : can take the following options [“Glasberg”]. Note that the use of different options than the default can lead to unexpected behavior/issues.

Note

../_images/gammatone_spectrogram.png

Architecture of the Gammatone spectrogram computation algorithm.#

Examples

from spafe.features.gfcc import erb_spectrogram
from spafe.utils.vis import show_spectrogram
from spafe.utils.preprocessing import SlidingWindow
from scipy.io.wavfile import read

# read audio
fpath = "../../../tests/data/test.wav"
fs, sig = read(fpath)

# compute erb spectrogram
gSpec, gfreqs = erb_spectrogram(sig,
                                fs=fs,
                                pre_emph=0,
                                pre_emph_coeff=0.97,
                                window=SlidingWindow(0.03, 0.015, "hamming"),
                                nfilts=128,
                                nfft=2048,
                                low_freq=0,
                                high_freq=fs/2)

# visualize spectrogram
show_spectrogram(gSpec.T,
                 fs=fs,
                 xmin=0,
                 xmax=len(sig)/fs,
                 ymin=0,
                 ymax=(fs/2)/1000,
                 dbf=80.0,
                 xlabel="Time (s)",
                 ylabel="Frequency (kHz)",
                 title="Erb spectrogram (dB)",
                 cmap="jet")
../_images/gfcc-1.png
spafe.features.gfcc.gfcc(sig: ndarray, fs: int = 16000, num_ceps: int = 13, pre_emph: bool = True, pre_emph_coeff: float = 0.97, window: Optional[SlidingWindow] = None, nfilts: int = 24, nfft: int = 512, low_freq: float = 0, high_freq: Optional[float] = None, scale: typing_extensions.Literal[ascendant, descendant, constant] = 'constant', dct_type: int = 2, use_energy: bool = False, lifter: Optional[int] = None, normalize: Optional[typing_extensions.Literal[mvn, ms, vn, mn]] = None, fbanks: Optional[ndarray] = None, conversion_approach: typing_extensions.Literal[Glasberg] = 'Glasberg') ndarray[source]#

Compute the Gammatone-Frequency Cepstral Coefficients (GFCC features) from an audio signal as described in [Jeevan] and [Xu].

Parameters
  • sig (numpy.ndarray) – a mono audio signal (Nx1) from which to compute features.

  • fs (int) – the sampling frequency of the signal we are working with. (Default is 16000).

  • num_ceps (int) – number of cepstra to return). (Default is 13).

  • pre_emph (bool) – apply pre-emphasis if 1. (Default is True).

  • pre_emph_coeff (float) – pre-emphasis filter coefficient. (Default is 0.97).

  • window (SlidingWindow) – sliding window object. (Default is None).

  • nfilts (int) – the number of filters in the filter bank. (Default is 40).

  • nfft (int) – number of FFT points. (Default is 512).

  • low_freq (float) – lowest band edge of mel filters (Hz). (Default is 0).

  • high_freq (float) – highest band edge of mel filters (Hz). (Default is samplerate / 2).

  • scale (str) – monotonicity behavior of the filter banks. (Default is “constant”).

  • dct_type (int) – type of DCT used. (Default is 2).

  • use_energy (int) – overwrite C0 with true log energy. (Default is 0).

  • lifter (int) – apply liftering if value given. (Default is None).

  • normalize (str) – apply normalization if type specified. (Default is None).

  • fbanks (numpy.ndarray) – filter bank matrix. (Default is None).

  • conversion_approach (str) – erb scale conversion approach. (Default is “Glasberg”).

Returns

2d array of GFCC features (num_frames x num_ceps)

Return type

(numpy.ndarray)

Raises

ParameterError – if nfilts < num_ceps

Tip

  • scale : can take the following options [“constant”, “ascendant”, “descendant”].

  • dct : can take the following options [1, 2, 3, 4].

  • normalize : can take the following options [“mvn”, “ms”, “vn”, “mn”].

  • conversion_approach : can take the following options [“Glasberg”]. Note that the use of different options than the default can lead to unexpected behavior/issues.

Note

../_images/gfccs.png

Architecture of the Gammatone frequency cepstral coefficients extraction algorithm.#

References

Jeevan

: Jeevan, M., Dhingra, A., Hanmandlu, M., & Panigrahi, B. K. (2016). Robust Speaker Verification Using GFCC Based i-Vectors. Proceedings of the International Conference on Signal, Networks, Computing, and Systems, 85–91. doi:10.1007/978-81-322-3592-7_9

Xu

: Xu, H., Lin, L., Sun, X., & Jin, H. (2012). A New Algorithm for Auditory Feature Extraction. 2012 International Conference on Communication Systems and Network Technologies. doi:10.1109/csnt.2012.57

Examples
from scipy.io.wavfile import read
from spafe.features.gfcc import gfcc
from spafe.utils.preprocessing import SlidingWindow
from spafe.utils.vis import show_features

# read audio
fpath = "../../../tests/data/test.wav"
fs, sig = read(fpath)

# compute mfccs and mfes
gfccs  = gfcc(sig,
              fs=fs,
              pre_emph=1,
              pre_emph_coeff=0.97,
              window=SlidingWindow(0.03, 0.015, "hamming"),
              nfilts=128,
              nfft=2048,
              low_freq=0,
              high_freq=8000,
              normalize="mvn")

# visualize features
show_features(gfccs, "Gammatone Frequency Cepstral Coefficients", "GFCC Index", "Frame Index")
../_images/gfcc-2.png