spafe.features.cqcc#
Description : Constant Q-transform Cepstral Coefficients (CQCCs) extraction algorithm implementation.
Copyright (c) 2019-2024 Ayoub Malek. This source code is licensed under the terms of the BSD 3-Clause License. For a copy, see <https://github.com/SuperKogito/spafe/blob/master/LICENSE>.
- spafe.features.cqcc.cqt_spectrogram(sig: ndarray, fs: int = 16000, pre_emph: bool = True, pre_emph_coeff: float = 0.97, window: Optional[SlidingWindow] = None, nfft: int = 512, low_freq: float = 0, high_freq: Optional[float] = None, number_of_octaves: int = 7, number_of_bins_per_octave: int = 24, spectral_threshold: float = 0.005, f0: float = 120, q_rate: float = 1.0)[source]#
Compute the Constant-Q Cepstral spectrogram from an audio signal as in [Todisco].
- Parameters
sig (numpy.ndarray) – a mono audio signal (Nx1) from which to compute features.
fs (int) – the sampling frequency of the signal we are working with. (Default is 16000).
pre_emph (int) – apply pre-emphasis if 1. (Default is 1).
pre_emph_coeff (float) – pre-emphasis filter coefficient. (Default is 0.97).
window (SlidingWindow) – sliding window object. (Default is None).
nfft (int) – number of FFT points. (Default is 512).
low_freq (float) – lowest band edge of mel filters (Hz). (Default is 0).
high_freq (float) – highest band edge of mel filters (Hz). (Default is samplerate/2).
number_of_octaves (int) – number of occtaves. (Default is 7).
number_of_bins_per_octave (int) – numbers of bins oer occtave. (Default is 24).
spectral_threshold (float) – spectral threshold. (Default is 0.005).
f0 (float) – fundamental frequency. (Default is 28).
q_rate (float) – number of FFT points. (Default is 1.0).
- Returns
2d array of the spectrogram matrix (num_frames x num_ceps)
- Return type
Note
Examples
from spafe.features.cqcc import cqt_spectrogram from spafe.utils.vis import show_spectrogram from spafe.utils.preprocessing import SlidingWindow from scipy.io.wavfile import read # read audio fpath = "../../../tests/data/test.wav" fs, sig = read(fpath) # compute spectrogram qSpec = cqt_spectrogram(sig, fs=fs, pre_emph=0, pre_emph_coeff=0.97, window=SlidingWindow(0.03, 0.015, "hamming"), nfft=2048, low_freq=0, high_freq=fs/2) # visualize spectrogram show_spectrogram(qSpec, fs=fs, xmin=0, xmax=len(sig)/fs, ymin=0, ymax=(fs/2)/1000, dbf=80.0, xlabel="Time (s)", ylabel="Frequency (kHz)", title="CQT spectrogram (dB)", cmap="jet")
- spafe.features.cqcc.cqcc(sig, fs: int = 16000, num_ceps: int = 13, pre_emph: bool = True, pre_emph_coeff: float = 0.97, window: Optional[SlidingWindow] = None, nfft: int = 512, low_freq: float = 0, high_freq: Optional[float] = None, dct_type: int = 2, lifter: Optional[int] = None, normalize: Optional[typing_extensions.Literal[mvn, ms, vn, mn]] = None, number_of_octaves: int = 7, number_of_bins_per_octave: int = 24, resampling_ratio: float = 1.0, spectral_threshold: float = 0.005, f0: float = 120, q_rate: float = 1.0)[source]#
Compute the Constant-Q Cepstral Coefficients (CQCC features) from an audio signal as described in [Todisco].
- Parameters
sig (numpy.ndarray) – a mono audio signal (Nx1) from which to compute features.
fs (int) – the sampling frequency of the signal we are working with. (Default is 16000).
num_ceps (int) – number of cepstra to return. (Default is 13).
pre_emph (bool) – apply pre-emphasis if 1. (Default is 1).
pre_emph_coeff (float) – pre-emphasis filter coefficient. (Default is 0.97).
win_len (float) – window length in sec. (Default is 0.025).
win_hop (float) – step between successive windows in sec. (Default is 0.01).
win_type (float) – window type to apply for the windowing. (Default is “hamming”).
nfft (int) – number of FFT points. (Default is 512).
low_freq (float) – lowest band edge of mel filters (Hz). (Default is 0).
high_freq (float) – highest band edge of mel filters (Hz). (Default is samplerate/2).
dct_type (int) – type of DCT used. (Default is 2).
lifter (int) – apply liftering if value given. (Default is None).
normalize (str) – normalization approach. (Default is None).
number_of_octaves (int) – number of occtaves. (Default is 7).
number_of_bins_per_octave (int) – numbers of bins oer occtave. (Default is 24).
resampling_ratio (float) – ratio to use for the uniform resampling. (Default is 1.00).
spectral_threshold (float) – spectral threshold. (Default is 0.005).
f0 (float) – fundamental frequency. (Default is 28).
q_rate (float) – number of FFT points. (Default is 1.0).
- Returns
2d array of BFCC features (num_frames*resampling_ratio x num_ceps).
- Return type
Tip
dct
: can take the following options [1, 2, 3, 4].normalize
: can take the following options [“mvn”, “ms”, “vn”, “mn”].
References
- Todisco(1,2)
: Todisco M., Héctor Delgado H., Evans N., Constant Q cepstral coefficients: A spoofing countermeasure for automatic speaker verification, Computer Speech & Language, Volume 45, 2017, Pages 516-535, ISSN 0885-2308, https://doi.org/10.1016/j.csl.2017.01.001.
Note
- Examples
from scipy.io.wavfile import read from spafe.features.cqcc import cqcc from spafe.utils.preprocessing import SlidingWindow from spafe.utils.vis import show_features # read audio fpath = "../../../tests/data/test.wav" fs, sig = read(fpath) # compute cqccs cqccs = cqcc(sig, fs=fs, pre_emph=1, pre_emph_coeff=0.97, window=SlidingWindow(0.03, 0.015, "hamming"), nfft=2048, low_freq=0, high_freq=fs/2, normalize="mvn") # visualize features show_features(cqccs, "Constant Q-Transform Cepstral Coefficients", "CQCC Index", "Frame Index")